Abstract

Recent studies have shown that pre and postconditioning the heart with sodium thiosulfate (STS) attenuate ischemia-reperfusion (IR) injury. However, the underlying mechanism involved in the cardioprotective signaling pathway is not fully explored. This study examined the existing link of STS mediated protection (as pre and post-conditioning agents) with PI3K, mTOR, and mPTP signaling pathways using its respective inhibitors. STS was administered to the isolated perfused rat heart through Kreb's Heinselit buffer before ischemia (precondition: SIPC) and reperfusion (postcondition: SPOC) in the presence and absence of the PI3K, mTOR, and mPTP signaling pathway inhibitors (wortmannin, rapamycin, and glibenclamide respectively). SIPC failed to improve the IR injury-induced altered cardiac hemodynamics, increased infarct size, and the release of cardiac injury markers in the presence of these inhibitors. On the other hand, the SPOC protocol effectively rendered the cardioprotection even in the PI3K/mTOR/KATP inhibitors presence. Interestingly, the SIPC's identified mode of action viz reduction in oxidative stress and the preservation of mitochondrial function were lost in the inhibitors' presence. Based on the above results, we conclude that the underlying mechanism of SIPC mediated cardioprotection works via the PI3K/mTOR/KATP signaling pathway axis activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.