Abstract

The present study was conducted to observe the role of the root-shoot transition zone in the development of PS I and PS II in red light. The development of PS II and PS I was severely inhibited when root-shoot transition zones of wheat seedlings were exposed to red light (670 nm) of intensity 500 micromol m(-2) s(-1). Chlorophyll biosynthesis was also inhibited in these seedlings. Most of the PS I and PS II proteins (D1, LHCPII, CP47, OEC33) and their transcript levels were severely inhibited but cyt b6f complex proteins were only partially inhibited. Protein and transcript levels of Rubisco large subunit and protochlorophyllide (Pchlide) biosynthesis were also severely inhibited in these seedlings. When incubated in the dark with or without the precursor of chlorophyll biosynthesis ALA, these plants accumulated most of the Pchlide, as non-phototransformable Pchlide, suggesting low activity of NADPH:protochlorophyllide oxidoreductase (EC 1.6.99.1) in these plants. These effects were not observed when the seedlings were grown in red light with their root-shoot transition zones covered. These results suggest that the root-shoot transition zone plays an important role in the overall greening process involving transcription and translation of photosynthetic genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.