Abstract

Shoots of cold‐acclimated seedlings of Pinus sylvestris L. were exposed to a temperature of –7°C for 4 h, in darkness or at a photon flux density of 1 300 μmol m‐2s‐1. Before and after freezing, fluorescence kinetics of intact needles and isolated chloroplast membranes were measured at both room temperature and 77 K. Maximum and variable fluorescence yield of photosystem II both at room temperature and 77 K decreased strongly after freezing in light, whereas the initial fluorescence yield was little affected. Quenching of maximum and variable fluorescence of photosystem I at 77 K also occurred. The results show that freezing in light damages photosystem II, thereby increasing the radiationless decay at the reaction centres of photosystem II. This is a typical symptom of photoinhibition of photosynthesis. Freezing in darkness did not significantly reduce fluorescence yield of photosystem II or photosystem I. Moreover, electron transport capacity was not significantly affected. We therefore suggest that the inhibition of the CO2 assimilation in pine seedlings by freezing alone does not involve thylakoid inactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.