Abstract
Background/Aims: Phosphodiesterase type 4 (PDE4) has been previously shown to regulate colonic contractile activity in vitro. In this study, the effects of PDE4 inhibition were assessed in a model of stress-induced defecation previously demonstrated to be due to increased colonic transit/evacuation. Methods: Rats were individually placed in a mild restraint cage and placed into a 12°C environment (cold-restraint stress) for 60 min. Mice received restraint (only) stress at room temperature for 30 min. Loperamide (positive control compound) or two different PDE4 inhibitors (rolipram and roflumilast) were administered orally at several doses to the rodents 1 h before stress began. Vehicle alone was administered for comparison. The number of fecal pellets expelled during stress (fecal pellet output), total fecal pellet wet weight and total fecal water content were measured. Results: Loperamide produced a dose-related decrease (ID<sub>50</sub>s in mg/kg) in fecal pellet output (rat = 7.4, mouse = 0.7) and significantly decreased fecal wet weight (72.9%) and decreased fecal percent water content (9.4%). The two PDE4 inhibitors produced a similar dose-related inhibition of fecal pellet output. Rolipram exhibited ID<sub>50</sub>s in rat and mouse of 14.1 and 27.1, respectively. Rolipram significantly decreased fecal wet weight (58.8%) but increased fecal percent water content (15.0%). For roflumilast, ID<sub>50</sub>s were 24.2 mg/kg and 12.4 in the rat and mouse, respectively. Although roflumilast also significantly (p < 0.05) decreased fecal wet weight (47.2%), it did not significantly increase fecal percent water content. Conclusions: These data indicate that PDE4 inhibition is effective in reducing rodent stress-induced defecation, provides the first functional data on a potential role for PDE4 activity in the colonic evacuation response to stress, and indicates the potential utility of PDE4 inhibitors in functional bowel disease such as irritable bowel syndrome requires further evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.