Abstract

Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphologic, and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze, novel object recognition, and location tasks (object recognition test and/or object location test), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase; MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a protein kinase G inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP, or KT5823. PDE2 inhibition reduced stress-induced extracellular-regulated protein kinase activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and CREB phosphorylation) and plasticity-related proteins (e.g., Egr-1 and brain-derived neurotrophic factor). Pretreatment with inhibitors of NMDA, CaMKII, neuronal nitric oxide synthase, and protein kinase G (or protein kinase A) blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related NMDAR-CaMKII-cGMP/cAMP signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.