Abstract

An essential element of the signalling cascade leading to synaptic plasticity is the intracellular second messenger molecule guanosine 3′,5′-cyclic monophosphate (cGMP). Using the novel, potent, and selective inhibitor Bay 60-7550, we show that the enzyme 3′,5′-cyclic nucleotide phosphodiesterase type 2 (PDE2) is responsible for the degradation of newly synthesized cGMP in cultured neurons and hippocampal slices. Inhibition of PDE2 enhanced long-term potentiation of synaptic transmission without altering basal synaptic transmission. Inhibition of PDE2 also improved the performance of rats in social and object recognition memory tasks, and reversed MK801-induced deficits in spontaneous alternation in mice in a T-maze. Our data provide strong evidence that inhibition of PDE2 can improve memory functions by enhancing neuronal plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call