Abstract

Aberrant activation of the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B-signaling pathway has been associated with multiple human cancers, including thyroid cancer. Recently, we showed that, similar to human thyroid cancer, the PI3K-AKT pathway is overactivated in both the thyroid and metastatic lesions of a mouse model of follicular thyroid carcinoma (TRbeta(PV/PV) mice). This TRbeta(PV/PV) mouse harbors a knockin mutant thyroid hormone receptor beta gene (TRbetaPV mutant) that spontaneously develops thyroid cancer and distant metastasis similar to human follicular thyroid cancer. That the activation of the PI3K-AKT signaling contributes to thyroid carcinogenesis raised the possibility that this pathway could be a potential therapeutic target in follicular thyroid carcinoma. The present study tested this possibility by treating TRbeta(PV/PV) mice with LY294002 (LY), a potent and specific PI3K inhibitor, and evaluating the effect of LY on the spontaneous development of thyroid cancer. LY treatment inhibited the AKT-mammalian target of rapamycin (mTOR)-p70(S6K) signaling, and it decreased cyclin D1 and increased p27(Kip1) expression to inhibit thyroid tumor growth and reduce tumor cell proliferation. LY treatment increased caspase 3 and decreased phosphorylated-BAD to induce apoptosis. In addition, LY treatment reduced the AKT-matrix metalloproteinase 2 signaling to decrease cell motility to block metastatic spread of thyroid tumors. Thus, these altered signaling pathways converged effectively to prolong survival of TRbeta(PV/PV) mice treated with LY. No significant adverse effects were observed for wild-type mice treated similarly with LY. The present study provides the first preclinical evidence for the in vivo efficacy for LY in the treatment of follicular thyroid cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.