Abstract
Eukaryotic homologs of bacterial peptide deformylases were recently found in several vascular plants and may be essential in chloroplast protein processing. Treating tobacco seedlings with the peptide deformylase inhibitor actinonin resulted in leaf chlorosis and reduced growth and development, indicative of a systemic movement of the inhibitor. Photosystem II (PSII) activity was reduced, manifested as a significant decrease in the maximum quantum efficiency of photosystem II. Accumulation and assembly of nascent D1 protein into PSII monomers was also reduced, eventually leading to PSII disassembly and leaf necrosis. Processing and assembly of D1 protein in tobacco was a major and potentially critical target of peptide deformylase inhibition. These results confirm that N-terminal deformylation is an essential step in the accumulation and assembly of PSII subunit polypeptides in the chloroplasts of vascular plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.