Abstract

Background & aimsDysregulated cholesterol metabolism is the major factor responsible for cholesterol gallstones (CGS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol homeostasis and its inhibitors secure approval for treating various cholesterol metabolic disorders such as hypercholesterolemia and cardiovascular diseases, but its role in CGS remains unclear. Our study aims to clarify mechanisms by which PCSK9 promotes CGS formation and explore the application of the PCSK9 inhibitor, alirocumab, in preventing and treating CGS. Approach & resultsThe expressions of PCSK9 were notably increased in CGS patients' serum, bile, and liver tissues compared to those without gallstones. Moreover, among CGS patients, hepatic PCSK9 was positively correlated with hepatic cholesterol and negatively correlated with hepatic bile acids (BAs), suggesting PCSK9 was involved in disrupted hepatic cholesterol metabolism related to CGS. Mechanistically, in vitro experiments demonstrated that inhibition of PCSK9 enhanced nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Finally, inhibition of PCSK9 prevented CGS formation and dissolved the existing stones in CGS mice by elevating the conversion of cholesterol into BAs through PPARα-mediated CYP7A1 activation. Additionally, serum PCSK9 level may function as a prognostic signature to evaluate the therapeutic efficacy of PCSK9 inhibitors. ConclusionsInhibition of PCSK9 exerts preventive and therapeutic effects on CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs, which highlights the potential of PCSK9 inhibition as a promising candidate for preventing and treating CGS in clinical applications. Impact and implicationsPCSK9 plays a pivotal role in cholesterol metabolism and its inhibitors are approved for clinical use in cardiovascular diseases. Our study observes inhibition of PCSK9 prevents and dissolves CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs. Mechanistically, PCSK9 inhibition enhanced the nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Our study sheds light on the new function and mechanism of PCSK9 in CGS, providing a novel preventive and therapeutic target with potential clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call