Abstract
Immune checkpoint therapy, such as programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blockade, has achieved remarkable results in treating various tumors. However, most cancer patients show a low response rate to PD-1/PD-L1 blockade, especially those with microsatellite stable/mismatch repair-proficient colorectal cancer subtypes, which indicates an urgent need for new approaches to augment the efficacy of PD-1/PD-L1 blockade. Cholesterol metabolism, which involves generating multifunctional metabolites and essential membrane components, is also instrumental in tumor development. In recent years, inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9), a serine proteinase that regulates cholesterol metabolism, has been demonstrated to be a method enhancing the antitumor effect of PD-1/PD-L1 blockade to some extent. Mechanistically, PCSK9 inhibition can maintain the recycling of major histocompatibility protein class I, promote low-density lipoprotein receptor-mediated T-cell receptor recycling and signaling, and modulate the tumor microenvironment (TME) by affecting the infiltration and exclusion of immune cells. These mechanisms increase the quantity and enhance the antineoplastic effect of cytotoxic T lymphocyte, the main functional immune cells involved in anti-PD-1/PD-L1 immunotherapy, in the TME. Therefore, combining PCSK9 inhibition therapy with anti-PD-1/PD-L1 immunotherapy may provide a novel option for improving antitumor effects and may constitute a promising research direction. This review concentrates on the relationship between PCSK9 and cholesterol metabolism, systematically discusses how PCSK9 inhibition potentiates PD-1/PD-L1 blockade for cancer treatment, and highlights the research directions in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.