Abstract

Atherosclerosis (AS) is a complex multifactorial and chronic inflammatory vascular disease that contributes to the development of cardiovascular diseases. Abnormal cellular proliferation in human umbilical vein endothelial cells (HUVECs) is a crucial element in AS development. In this study, we investigated the potential role of the long noncoding RNA LINC02381/microRNA (miR)-491-5p/transcription factor 7 (TCF7) axis in regulating HUVEC injury in 30 participants suffering from AS and 30 healthy control participants. We established an in vitro model of AS in HUVECs using oxidized low-density lipoprotein (ox-LDL), and measured cellular mRNA and protein levels of LINC02381, miR-491-5p, and TCF7 in serum samples using reverse transcription-quantitative polymerase chain reaction and Western blotting assays. We evaluated cell viability, apoptosis, and inflammation using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Moreover, we analyzed apoptosis-related protein expression using western blotting analysis and determined the association between miR-491-5p and LINC02381 or TCF7 using dual-luciferase reporter assay, RNA pull-down, and rescue experiments. We observed that LINC02381 was elevated, while miR-491-5p was downregulated in serum samples from participants with AS and in ox-LDL-treated HUVECs. LINC02381 knockdown was protective against HUVEC injury via miR-491-5p inhibition, which is its downstream target. Rescue experiments further demonstrated that miR-491-5p alleviated HUVEC injury by modulating TCF7. Thus, LINC02381 knockdown ameliorated HUVEC injury by regulating the miR-491-5p/TCF7 axis, which provides new insights into AS treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call