Abstract

The present study was designed to study the interaction of propionic acid and carnitine on oxidative metabolism by isolated rat hepatocytes. Propionic acid (10 mM) inhibited hepatocyte oxidation of [1-14C]-pyruvate (10 mM) by 60%. This inhibition was not the result of substrate competition, as butyric acid had minimal effects on pyruvate oxidation. Carnitine had a small inhibitory effect on pyruvate oxidation in the hepatocyte system (210 +/- 19 and 184 +/- 18 nmol of pyruvate/60 min per mg of protein in the absence and presence of 10 mM-carnitine respectively; means +/- S.E.M., n = 10). However, in the presence of propionic acid (10 mM), carnitine (10 mM) increased the rate of pyruvate oxidation by 19%. Under conditions where carnitine partially reversed the inhibitory effect of propionic acid on pyruvate oxidation, formation of propionylcarnitine was documented by using fast-atom-bombardment mass spectroscopy. Propionic acid also inhibited oxidation of [1-14C]palmitic acid (0.8 mM) by hepatocytes isolated from fed rats. The degree of inhibition caused by propionic acid was decreased in the presence of 10 mM-carnitine (41% inhibition in the absence of carnitine, 22% inhibition in the presence of carnitine). Propionic acid did not inhibit [1-14C]palmitic acid oxidation by hepatocytes isolated from 48 h-starved rats. These results demonstrate that propionic acid interferes with oxidative metabolism in intact hepatocytes. Carnitine partially reverses the inhibition of pyruvate and palmitic acid oxidation by propionic acid, and this reversal is associated with increased propionylcarnitine formation. The present study provides a metabolic basis for the efficacy of carnitine in patients with abnormal organic acid accumulation, and the observation that such patients appear to have increased carnitine requirements ('carnitine insufficiency').

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.