Abstract

The molecular mechanisms mediating external root resorption are poorly understood. Interleukin-33 (IL-33) expression increased remarkably in the periodontal ligament (PDL) under orthodontic loading. The IL-33-driven responses are delicately cell type- and tissue context-dependent. It is unknown how IL-33 act on osteoclastogenesis in the context of root surface. This study aimed to investigate the effect of IL-33 on osteoclastogenesis in the PDL under mechanical loading. C57BL/6J mice were treated with injections of phosphate buffer saline (PBS) or recombinant mouse IL-33 (rmIL-33, 6μl, 30 μg/ml), and subjected to models of orthodontic tooth movement. Tartrated resistant acid phosphates (TRAP)-positive cells and IL-33 expressions were examined in the PDL. IL-33 release from human PDL cells (hPDLCs) was detected by ELISA. Cementoblast-like (OCCM-30) cells were cultured in the presence of rmIL-33 to examine the release of osteoclast-regulatory proteins. The effects of rmIL-33 on osteoclastogenesis were examined in vitro in cultures of bone marrow macrophages (BMMs) and in BMMs-OCCM-30 cocultures. Expressions of osteoclast-specific or -related genes and proteins were investigated in BMMs-OCCM-30 cocultures treated with or without rmIL-33, in the presence or absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibody. Interleukin-33 expressions were upregulated in the PDL under orthodontic loading. Static compressive force enhanced expression and release of IL-33 from hPDLCs. Administration of rmIL-33 resulted in reduced number of TRAP-positive cells in the PDL, and inhibited osteoclast differentiation from BMMs in vitro. OCCM-30 cells had varied osteoprotegerin (OPG) / receptor activator for nuclear factor-κB ligand (RANKL) secretion and increased release of GM-CSF under rmIL-33 stimulation. Treatment with rmIL-33 in BMMs-OCCM-30 cocultures resulted in inhibited differentiation and decreased activity of osteoclasts, and these effects were partially reversed by GM-CSF neutralizing antibody. Interleukin-33 inhibits osteoclastogenesis in the PDL under orthodontic loading. The anti-osteoclastogenic effects were mediated partly by directly affecting osteoclast precursors and partly by cementoblast-mediated release of GM-CSF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call