Abstract

Osteoclasts are responsible for bone erosion in diseases as diverse as osteoporosis, periodontitis, and rheumatoid arthritis. Natural plant-derived products have received recent attention as potential therapeutic and preventative drugs in human disease. The effect of rotenone in RANKL-induced osteoclast differentiation was examined in this study. Rotenone inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, TRAP, and OSCAR in RANKL-treated BMMs was inhibited by rotenone treatment. Rotenone strongly inhibited p38 and ERK phosphorylation and I-κB degradation in RANKL-stimulated BMMs, and did not inhibit JNK phosphorylation. Further, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by rotenone. Rotenone additionally inhibited the bone resorptive activity of differentiated osteoclasts. A lipopolysaccharide (LPS)-induced bone erosion study was also performed to assess the effects of rotenone in vivo. Mice treated with rotenone demonstrated marked attenuation of bone erosion based on Micro CT and histologic analysis of femurs. These results collectively suggested that rotenone demonstrated inhibitory effects on osteoclast differentiation in vitro and suppressed inflammatory bone loss in vivo. Rotenone may therefore serve as a useful drug in the prevention of bone loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call