Abstract
Sirolimus (rapamycin) is used in drug-eluting stent strategies and proved clearly superior in this application compared with other immunomodulators such as pimecrolimus. The molecular basis of this action of sirolimus in the vascular system is still incompletely understood. Measurements of cell proliferation in human coronary artery smooth muscle cells (hCASM) demonstrated a higher antiproliferative activity of sirolimus compared with pimecrolimus. Although sirolimus lacks inhibitory effects on calcineurin, nuclear factor of activated T-cell activation in hCASM was suppressed to a similar extent by both drugs at 10 μM. Sirolimus, but not pimecrolimus, inhibited agonist-induced and store-operated Ca(2+) entry as well as cAMP response element binding protein (CREB) phosphorylation in human arterial smooth muscle, suggesting the existence of an as-yet unrecognized inhibitory effect of sirolimus on Ca(2+) signaling and Ca(2+)-dependent gene transcription. Electrophysiological experiments revealed that only sirolimus but not pimecrolimus significantly blocked the classical stromal interaction molecule/Orai-mediated, store-operated Ca(2+) current reconstituted in human embryonic kidney cells (HEK293). A link between Orai function and proliferation was confirmed by dominant-negative knockout of Orai in hCASM. Analysis of the effects of sirolimus on cell proliferation and CREB activation in an in vitro model of arterial intervention using human aorta corroborated the ability of sirolimus to suppress stent implantation-induced CREB activation in human arteries. We suggest inhibition of store-operated Ca(2+) entry based on Orai channels and the resulting suppression of Ca(2+) transcription coupling as a key mechanism underlying the antiproliferative activity of sirolimus in human arteries. This mechanism of action is specific for sirolimus and not a general feature of drugs interacting with FK506-binding proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.