Abstract

The formycin analogs of nitrobenzylthioinosine and nitrobenzylthioguanosine were synthesized and evaluated as nucleoside transport inhibitors. These analogs have a potential therapeutic advantage over their parent compounds in that their C-nucleosidic linkages prevent them from being degraded to the immunosuppressive agents, 6-mercaptopurine and 6-thioguanine. 7-[(4-Nitrobenzyl)-thio]-3-((β- d-ribofuranosyl) pyrazolo[4,3- d]pyrimidine (NBTF) and 5-amino-7-[(4-nitrobenzyl)thio]-3-(β- d-ribofuranosyl) pyrazolo[4,3- d]pyrimidine (NBTGF) were inhibitors of nucleoside transport in human erythrocytes and HL-60 leukemia cells. The IC 50 values for nitrobenzylthioinosine, NBTF and NBTGF with 10% erythrocyte suspensions were 18, 18 and 40 nM respectively. Specific binding studies with [ 3H]NBTF yielded a K d of 3.4 nM with erythrocytes, approximately 10-fold higher than values reported for nitrobenzylthioinosine. NBTF and nitrobenzylthioinosine bound to HL-60 cells with K d values of 8.1 and 0.81 nM respectively. The octanol/water partition coefficients of nitrobenzylthioinosine, NBTF and NBTGF were 3.5, 3.2, and 2.8 respectively. NBTF could be expected to be equipotent with nitrobenzylthioinosine in whole blood where inhibitor concentrations of 10 −7 to 10 −6 M are required in order to saturate erythrocytic binding sites; hence, it may exhibit the advantages inherent in a C-nucleoside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.