Abstract

1. The effects of 7-ethoxyresorufin (7-ER), which is a substrate for and competitive inhibitor of cytochrome P450, were studied on responses to nitric oxide (NO), the NO donors sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), acetylcholine-induced endothelium-dependent relaxations of rat and rabbit aortic rings and nitrergic nerve stimulation-induced relaxations of rat anococcygeus muscles. 2. In rat and rabbit aortic rings, 7-ER (2 microM) inhibited the relaxations to acetylcholine in endothelium-intact preparations and the relaxant action of NO in endothelium-denuded preparations. Relaxant responses to SNP and GTN were inhibited by 7-ER in the rat but not rabbit aortic rings. However, the relaxant actions of papaverine and 8-bromo-cyclic GMP were not affected by 7-ER. 3. In rat anococcygeus muscles, 7ER (2 microM) inhibited the relaxant action of NO, but relaxations elicited by nitrergic nerve stimulation were only partly inhibited by a higher concentration of 7-ER (10 microM). 4. After inhibition by 7-ER, superoxide dismutase (100 u ml-1) restored NO-induced relaxations of the rat aortic rings, but not acetylcholine-, SNP or GTN-induced relaxations, and restored NO- and nitrergic nerve stimulation-induced relaxations of anococcygeus muscles. 5. Another cytochrome P450 inhibitor, troleandomycin (10-30 microM), had no effect on NO- or acetylcholine-induced relaxations of rat aortic rings and NO- or nitrergic nerve stimulation-induced relaxations of anococcygeus muscles. However, resorufin, an analogue of 7-ER, inhibited responses to acetylcholine, NO and GTN in rat aortic rings. 6. The results suggest that 7-ER inhibited responses to NO and nitrergic nerve stimulation through generation of superoxide radicals. However, an additional mechanism may be involved in the reduction in acetylcholine-induced response in aortic rings. 7. A 7-ER sensitive P450 system may be involved in the bioactivation of GTN and SNP in rat aortic rings, but not in rabbit aorta or rat anococcygeus muscles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.