Abstract

This review article explores the relationship between the NOD-like receptor protein 3 (NLRP3) inflammasome and the risk of developing polycystic ovary syndrome (PCOS). The NLRP3 inflammasome, a fundamental element of the innate immune system, plays a crucial role in the production of proinflammatory mediators and pyroptosis, a type inflammatory cell death. We conducted a thorough search on scientific databases to gather relevant information on this topic, utilizing relevant keywords. The reviewed studies indicated a correlation between PCOS and a higher incidence of granulosa cell (GC) death and the presence of ovarian tissue fibrosis. NLRP3 inflammasome stimulation and subsequent pyroptosis in GCs play a significant role in the pathophysiology of PCOS. Active NLRP3 inflammasome is involved in the production of inflammatory mediators like interleukin-1β (IL-1β) and IL-18, contributing to the development of PCOS, particularly in overweight patients. Therefore, inhibiting NLRP3 activation and pyroptosis could potentially offer novel therapeutic strategies for PCOS. Some limited studies have explored the use of agents with antioxidant and anti-inflammatory properties, as well as gene therapy approaches, to target the NLRP3 and pyroptosis signaling pathways. This study overview the understanding of the relationship between NLRP3 inflammasome activation, pyroptosis, and PCOS. It highlights the potential of targeting the NLRP3 inflammasome as an approach for treating PCOS. Nonetheless, further research and clinical trials are imperative to validate these results and explore the effectiveness of NLRP3 inflammasome inhibition in the management of PCOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.