Abstract

Androgens repress expression of many genes, yet the mechanism of this activity has remained elusive. The cytokine, interleukin-6, is active in a variety of biological systems, and its expression is repressed by androgens. Accordingly we dissected the mechanism of androgen's ability to inhibit interleukin-6 expression at the molecular level. In a series of co-transfection assays, we found that 5alpha-dihydrotestosterone, through the androgen receptor, repressed activation of the interleukin-6 promoter, in part, by inhibiting NFkappaB activity. It did not appear that 5alpha-dihydrotestosterone inhibited NFkappaB by activating the androgen receptor to compete for the NFkappaB response element as we could not detect androgen receptor binding to the IL-6 promoter by DNase I footprinting assay. However, by electrophoretic mobility shift assay we found that 5alpha-dihydrotestosterone repressed formation of NFkappaB middle dotNFkappaB response element complex formation. In LNCaP prostate carcinoma cells, 5alpha-dihydrotestosterone achieved this effect through maintenance of IkappaBalpha protein levels in the face of phorbol ester, a stimulus that results in IkappaBalpha degradation. Finally, we confirmed that IkappaBalpha inhibits NFkappaB-mediated activation of the interleukin-6 promoter. These data suggest that maintenance of IkappaBalpha levels may represent the first identified mechanism for androgen-mediated repression of a natural androgen-regulated gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call