Abstract

Growth arrest- and DNA damage-inducible protein α (gadd45α) is an important regulator for cell cycle, genomic stability, and cell apoptosis. In the present report, we demonstrated that NF-κB inhibition due to Ikkβ deficiency enhanced the stability of gadd45α mNRA. Using embryo fibroblast cells derived from wild type (wt) or Ikkβ gene knockout (Ikkβ −/−) mice, reverse transcription-polymerase chain reaction revealed a three- to fourfold increase of gadd45α mRNA in Ikkβ −/− cells compared with wt cells. The deficiency in Ikkβ substantially decreased basal NF-κB activity and increased accumulation of reactive oxygen species (ROS). However, such deficiency had no effect on the basal expression or activity of Akt, FoxO3a, p53, and c-myc that regulate the transcription of gadd45α gene positively or negatively. Analysis of gadd45α mRNA stability showed a ROS-dependent increase in the half-life of gadd45α mRNA in Ikkβ −/− cells. Immunoprecipitation experiments indicated an increased binding of a RNA stabilizing protein, nucleolin, to gadd45α mRNA in Ikkβ −/− cells. The binding of nucleolin to gadd45α mRNA could be prevented by the antioxidant, N-acetyl-cysteine. Thus, these data are the first to suggest that inhibition of Ikkβ-NF-κB signaling up-regulates the expression of gadd45α mNRA through a post-transcriptional, rather than a transcriptional, mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.