Abstract

Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.

Highlights

  • Imipramine, the oldest tricyclic antidepressant, is used to treat chronic psychiatric disorders, including major depressive disorder (MDD) and related diseases (Wille et al, 2008)

  • To assess whether the neuroprotective effect of imipramine is associated with inhibition of neutrophil infiltration and neutrophil-induced inflammation, we examined the effect of imipramine on neutrophil adhesion to a fibronectin-coated substrate and concomitant secretion of proteins, free amino acids and reactive oxygen species, as well as on apoptosis under control conditions or upon stimulation with LPS

  • Effect of Imipramine on the Morphology and Actin Cytoskeleton of Neutrophils Attached to Fibronectin

Read more

Summary

Introduction

Imipramine, the oldest tricyclic antidepressant, is used to treat chronic psychiatric disorders, including major depressive disorder (MDD) and related diseases (Wille et al, 2008). New pharmacological effects of antidepressants have been discovered, including anti-inflammatory effects. Stimuli such as inflammation, chronic stress and infection can trigger the activation of microglia, the brain’s immune cells, to release pro-inflammatory cytokines that may lead to MDD and neurodegeneration (Kopschina Feltes et al, 2017). The neuroprotective effect of imipramine and other antidepressants may be associated, at least in part, with the inhibition. Other immune cells that can play a key role in inflammation associated with chronic psychiatric disorders are neutrophils

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call