Abstract

Reduced glutathione (GSH) and N-acetylcysteine (NAC), but not other antioxidative or reducing agents, were found to inhibit cell death, both apoptosis and necrosis, induced by hypoxia in naive and nerve growth factor-differentiated PC12 cells. The level of intracellular total GSH decreased time-dependently during hypoxia, but exogenously added GSH prevented such a decrease in GSH. Pretreatment of cells with exogenous GSH or NAC resulted in inhibition of both neutral sphingomyelinase (SMase) activation and ceramide formation during hypoxia. In the in vitro assay system, neutral SMase activity was inhibited dose-dependently by GSH and NAC. Activation of caspase-3 induced by hypoxia was also inhibited by either GSH or NAC. NAC but not GSH inhibited caspase-3 activation induced by C2-ceramide. These results suggest that GSH protects cells from hypoxic injury by direct inhibition of neutral SMase activity and ceramide formation, resulting in inhibition of caspase-3 activation, and that NAC exerts an additional inhibitory effect(s) downstream of ceramide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.