Abstract

There is an accumulation of the glycolytic enzyme enolase and of cholesteryl esters in macrophages that have been converted into "foam" cells. In this study, we questioned whether enolase could be involved in this accumulation of cholesteryl esters by inhibiting the activity of neutral cholesteryl ester hydrolases. Enolase from both yeast and rabbit muscle were incubated with three different cholesteryl ester hydrolases and were shown to inhibit the hydrolysis of cholesteryl esters. Inhibition was dependent on the concentration of enolase and appeared to occur through binding of the enolase to the cholesteryl ester. Nevertheless, the yeast and rabbit muscle enolases differed in their efficiency of inhibition and in their mechanism of action. Purification of commercial enolase preparations by gel-filtration yielded single proteins with the same inhibitory activities as the originals, indicating that the inhibition was not due to the presence of an impurity. Partially purified alpha alpha- and gamma gamma-isoforms of the enzyme from rat brain also appear to have inhibitory effects on cholesteryl ester hydrolysis. Negative control of the hydrolytic phase of the cholesterol/cholesteryl ester cycle may be a secondary function of enolases which correlates with the accumulation of cholesteryl esters in a number of neuro-degenerative and demyelinating diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.