Abstract

Diazepam binds with the same high affinity to the central benzodiazepine receptor (CBR) and the peripheral benzodiazepine receptor, which has been renamed translocator protein (TSPO). Both receptors could promote neurosteroid synthesis. In the present study, we investigated whether a single dose of diazepam could inhibit neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), and whether CBR and TSPO mediated this effect. We found that a single intraperitoneal injection of diazepam 9 d after L5 SNL significantly depressed the established mechanical allodynia and thermal hyperalgesia, which persisted until the end of the experiments. Furthermore, the effects were mimicked by a single intraperitoneal injection of Ro5-4864, a specific TSPO agonist and pregnenolone, a neurosteroid precursor. In addition, we found that the inhibitory effect of diazepam was also completely blocked by pretreatment with a specific CBR antagonist, flumazenil. The effects of diazepam or Ro5-4864 on neuropathic pain were completely blocked by pretreatment with a neurosteroid synthesis inhibitor, aminoglutethimide (AMG). Finally, any one of the three drugs, diazepam, Ro5-4864 and pregnenolone, could reduce the activation of astrocytes and the production of interleukin-1beta (IL-1β) in the L5 spinal dorsal horn 14 d after L5 SNL. These results suggest that in addition to exerting effects on CBR, diazepam may inhibit neuropathic pain via TSPO, which promotes neurosteroid formation, subsequently reducing the activation of astrocytes and production of cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call