Abstract

Microglial overactivation-mediated neuroinflammation contributes greatly to the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that is involved in the pathophysiology of various inflammatory diseases by inducing various proinflammatory cytokines. Compound 3-({[4-(4-methoxyphenyl)-6-methyl-2-pyrimidinyl]thio}methyl)benzoic acid (Z-312) is a novel small -molecule inhibitor of MIF tautomeric activity. In this study, we investigated the anti-inflammatory effects of Z-312 on liposaccharide (LPS)-induced neuroinflammation in vitro and in vivo. The results showed that Z-312 significantly decreased the production of nitric oxide (NO), interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 in LPS-stimulated microglial cells. Mechanistically, nuclear translocation of the p65 subunit of nuclear factor (NF)-κB, degradation and phosphorylation of IκBα, NF-κB transcriptional activity and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and JNK were markedly attenuated by pretreatment with Z-312 in BV-2 microglial cells. In addition, Z-312 suppressed the neurotoxic effects of cell culture medium of LPS-activated BV-2 microglia on cocultured mouse HT22 neuroblastoma cells. An in vivo study demonstrated that Z-312 markedly ameliorated microglial activation and subsequent DA neuron loss in an LPS-induced Parkinson’s disease (PD) mouse model. These results suggest that MIF inhibitor Z-312 may be a promising neuroprotective agent for the treatment of neuroinflammation-mediated neurological diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call