Abstract

Previous in vitro data suggest that ethanol (EtOH) activates NADPH oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption observed in vivo after EtOH exposure. In a rat model in which cycling females were infused intragastrically with EtOH-containing liquid diets, EtOH significantly decreased bone formation and stimulated osteoblast-dependent osteoclast differentiation. These effects were reversed by exogenous 17-β-estradiol coadministration. Moreover, coadministration of N-acetyl cysteine (NAC), an antioxidant, or diphenylene iodonium (DPI), a specific Nox inhibitor, also abolished chronic EtOH-associated bone loss. EtOH treatment up-regulated mRNA levels of Nox1, 2, 4, and the receptor activator of nuclear factor-κB ligand (RANKL), an essential factor for differentiation of osteoclasts in bone. Protein levels of Nox4, a major Nox isoform expressed in nonphagocytic cells, was also up-regulated by EtOH in bone. 17-β-Estradiol, NAC, and DPI were able to normalize EtOH-induced up-regulation of Nox and RANKL. In vitro experiments demonstrated that EtOH directly up-regulated Nox expression in osteoblasts. Pretreatment of osteoblasts with DPI eliminated EtOH-induced RANKL promoter activity. Furthermore, EtOH induced RANKL gene expression, and RANKL promoter activation in osteoblasts was ROS-dependent. These data suggest that inhibition of Nox expression and activity may be critical for prevention of chronic EtOH-induced osteoblast-dependent bone loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.