Abstract

Traumatic brain injury (TBI) is caused by acquired damage that includes cerebral edema after a mechanical injury and may cause cognitive impairment. We explored the role of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2; NOX2) and aquaporin-4 (AQP4) in the process of edema and cognitive abilities after TBI in NOX2−/− and AQP4−/− mice by using the Morris water maze test (MWM), step-down test (STD), novel object recognition test (NOR) and western blotting. Knockout of NOX2 in mice decreased the AQP4 and reduce edema in the hippocampus and cortex after TBI in mice. Moreover, inhibiting AQP4 by 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) or genetic deletion of AQP4 could attenuate neurological deficits without changing reactive oxygen species (ROS) levels after TBI in mice. Taken together, we suspected that inhibiting NOX2 could improve cognitive abilities by modulating ROS levels, then affecting AQP4 levels and brain edema after in TBI mice. Our study demonstrated that NOX2 play a key role in decreasing edema in brain and improving cognitive abilities by modulating AQP4 after TBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call