Abstract

Acetaminophen (APAP) overdose induces acute liver injury (ALI), even acute liver failure (ALF). There is a significant unmet need to furtherly elucidate the mechanisms and find new therapeutic target. Recently, emerging evidence indicates that nicotinamide adenine dinucleotide (NAD+) plays a crucial role in APAP-induced ALI. Herein, we firstly investigated the protein expression of NAD kinase (NADK), as the rate-limiting enzyme converting NAD+ to nicotinamide adenine dinucleotide phosphate (NADP+), and found it was positively correlated with APAP-induced ALI in a dose- and time-dependent manner. Additionally, supplementation of N-acetylcysteine (NAC), known as an antidote of APAP, mitigated the ALI and downregulated the expression of NADK which was also in a dose-dependent manner. Moreover, pretreatment with methotrexate (MTX), the inhibitor of NADK, attenuated the levels of transaminases, alleviated morphological abnormalities, and improved oxidative stress triggered by APAP overdose, which was attributed to elevated hepatic NAD+ pool. Subsequently, the increased NAD+ upregulated the expression of Sirt1, SOD2 and attenuated DNA damage. Collectively, elevated expression of NADK is related to APAP-induced ALI, and inhibition of NADK alleviates the ALI through elevating liver NAD+ level and improving antioxidant capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.