Abstract
We investigate the effect of myosin II inhibition on cell shape and nuclear motility in cultures of mouse radial glia-like neural progenitor and rat glioma C6 cells. Instead of reducing nucleokinesis, the myosin II inhibitor blebbistatin provokes an elongated bipolar morphology and increased nuclear motility in both cell types. When myosin II is active, time-resolved traction force measurements indicate a pulling force between the leading edge and the nucleus of C6 cells. In the absence of myosin II activity, traction forces during nucleokinesis are diminished below the sensitivity threshold of our assay. By visualizing the centrosome position in C6 cells with GFP-centrin, we show that in the presence or absence of myosin II activity, the nucleus tends to overtake or lag behind the centrosome, respectively. We interpret these findings with the help of a simple viscoelastic model of the cytoskeleton consisting active contractile and passive compressed elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.