Abstract

Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism.

Highlights

  • Myeloperoxidase (MPO) is a strong peroxidase present in neutrophil granules and its primary function is the generation of hypochlorous acid, the most powerful oxidant produced by neutrophils in appreciable amounts [1]

  • We have previously shown that Peptide Inhibitor of Complement C1 (PIC1) (PA-dPEG24) can inhibit P. aeruginosa-initiated complement activation in cystic fibrosis (CF) sputum soluble fractions [17]

  • In attempting to further elucidate the ability of PIC1 to modulate complement-initiated neutrophil effectors, we identified a novel effect of PIC1 on MPO catalytic activity in CF sputum sols

Read more

Summary

Introduction

Myeloperoxidase (MPO) is a strong peroxidase present in neutrophil granules and its primary function is the generation of hypochlorous acid, the most powerful oxidant produced by neutrophils in appreciable amounts [1]. MPO catalyzes the production of hypochlorous acid in the presence of hydrogen peroxide and chloride anion [2]. MPO is present in the lung fluid of cystic fibrosis (CF) patients likely as the result of neutrophil degranulation or cell death [3, 4]. Multiple investigators have suggested that MPO in the lung fluid of CF patients may contribute to parenchymal destruction in addition to neutrophil elastase and other factors [5,6,7]. The most commonly utilized substrate for testing MPO peroxidase activity is 3,3’,5,5’-Tetramethylbenzidine (TMB).

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.