Abstract
Dysfunction of the DNA repair pathway contributes to tumorigenesis and drug resistance. Methyl methanesulfonate and ultraviolet sensitive gene clone81 (MUS81), a key endonuclease in DNA repair, is generally considered a tumor suppressor; however, recent studies have revealed its tumor-promoting effect in epithelial ovarian cancer (EOC) and have shown that its overexpression is associated with cisplatin sensitization. However, the exact functional role of MUS81 and its regulation in relation to chemotherapy sensitivity remains unknown. Our previous study using protein interaction chip revealed that minichromosome maintenance complex component2 (MCM2) is closely correlated with MUS81. This study aimed to investigate the biological effects and mechanisms of MUS81 on cellular responses to chemotherapeutic drugs. To accomplish this, we downregulated MUS81 and MCM2 in A2780 and SKOV3 ovarian cancer cells using lentivirus-mediated RNAi. Using a qPCR-based HR assay kit to detect HR efficiency. The sensitivity of MUS81 to olaparib was investigated by cell proliferation, colony formation assays and flow cytometry. The results showed that MUS81 modulates MCM2 levels as well as homologous recombination (HR) activity. Moreover, downregulation of MUS81 increased the sensitivity of EOC cells to olaparib by inducing Sphasearrest and promoting apoptosis through activation of MCM2. MUS81 may be a potential novel therapeutic target for EOC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.