Abstract

The initiation of protein synthesis can be regulated in mammalian cells by protein kinases which phosphorylate the alpha subunit of initiation factor eIF-2. This phosphorylation results in a block in the recycling of eIF-2 and in the inhibition of messenger RNA binding to 80S initiation complexes. After eIF-2 alpha is phosphorylated, the mRNA becomes associated with 48S complexes consisting of a 40S ribosomal subunit, eIF-2 (alpha P), GDP and Met-tRNAf. One of the eIF-2 alpha kinases is activated by low concentrations of double-stranded RNA (dsRNA). This kinase (PKds) is present at a basal level in all mammalian cells investigated and its synthesis is induced in cells treated with interferon. The PKds may be involved in the inhibition of translation of viral mRNA in interferon-treated cells infected with RNA viruses, as it is activated by viral replicative complexes. It is not known, however, if the activated PKds preferentially inhibits the translation of viral mRNA when cellular protein synthesis proceeds at a normal rate in infected cells. We now report that mRNA covalently linked to dsRNA is preferentially inhibited from binding to 80S complexes by a localized activation of PKds. This suggests that in interferon-treated cells the binding of some nascent viral mRNAs to functional initiation complexes may be preferentially inhibited by a similar mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.