Abstract

Ischemia-reperfusion (I/R) injury is a common pathological mechanism in many retinal diseases, which can lead to cell death via mitochondrial dysfunction. Voltage-dependent anion channel 1 (VDAC1), which is mainly located in the outer mitochondrial membrane, is the gatekeeper of mitochondria. The permeability of mitochondrial membrane can be regulated by controlling the oligomerization of VDAC1. However, the functional mechanism of VDAC1 in retinal I/R injury was unclear. Our results demonstrate that oxygen-glucose deprivation and re-oxygenation (OGD/R) injury leads to apoptosis, necroptosis, and mitochondrial dysfunction of R28 cells. The OGD/R injury increases the levels of VDAC1 oligomerization. Inhibition of VDAC1 oligomerization by VBIT-12 rescued mitochondrial dysfunction by OGD/R and also reduced apoptosis/necroptosis of R28 cells. In vivo, the use of VBIT-12 significantly reduced aHIOP-induced neuronal death (apoptosis/necroptosis) in the rat retina. Our findings indicate that VDAC1 oligomers may open and enlarge mitochondrial membrane pores during OGD/R injury, leading to the release of death-related factors in mitochondria, resulting in apoptosis and necroptosis. This study provides a potential therapeutic strategy against ocular diseases caused by I/R injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.