Abstract

Mitochondrial, autophagic impairment, excitotoxicity, and also neuroinflammation are implicated in Alzheimer's disease (AD) pathophysiology. We postulated that inhibiting the mitochondrial pyruvate carrier-1 (MPC-1), which inhibits the activation of the mammalian target of rapamycin (mTOR), may ameliorate the neurodegeneration of hippocampal neurons in the rat AD model. To assess this, we used lapatinib ditosylate (LAP), an anti-cancer drug that inhibits MPC-1 through suppression of estrogen-related receptor-alpha (ERR-α), in D-galactose/ovariectomized rats. AD characteristics were developed in ovariectomized (OVX) rats following an 8-week injection of D-galactose (D-gal) (150 mg/kg, i.p.). The human epidermal growth factor receptor-2 (HER-2) inhibitor, LAP (100 mg/kg, p.o.) was daily administered for 3 weeks. LAP protected against D-gal/OVX-induced changes in cortical and hippocampal neurons along with improvement in learning and memory, as affirmed using Morris water maze (MWM) and novel object recognition (NOR) tests. Furthermore, LAP suppressed the hippocampal expression of Aβ1-42, p-tau, HER-2, p-mTOR, GluR-II, TNF-α, P38-MAPK, NOX-1, ERR-α, and MPC-1. Also, LAP treatment leads to activation of the pro-survival PI3K/Akt pathway. As an epilogue, targeting MPC-1 in the D-gal-induced AD in OVX rats resulted in the enhancement of autophagy, and suppression of neuroinflammation and excitotoxicity. Our work proves that alterations in metabolic signaling as a result of inhibiting MPC-1 were anti-inflammatory and neuroprotective in the AD model, revealing that HER-2, MPC-1, and ERR-α may be promising therapeutic targets for AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.