Abstract
Our results, as well as those of others, have indicated that 17β-estradiol (E2) exerts its nongenomic effects in neuronal cells by affecting plasma membrane Ca(2+) flux. In neuronal cells mitochondria possess Ca(2+) buffering properties as they both sequester and release Ca(2+). The goal of this study was to examine the rapid non-genomic effect of E2 on mitochondrial Ca(2+) transport in hippocampal synaptosomes from ovariectomised rats. In addition, we aimed to determine if, and to what extent, E2 receptors participated in mitochondrial Ca(2+) transport modulation by E2 in vitro. E2-specific binding and Ca(2+) transport was monitored. At physiological E2 concentrations (0.1-1.5 nmol/L), specific E2 binding to mitochondria isolated from hippocampal synaptosomes was detected with a B(max.) and K(m) of 37.6±2.6 fmol/mg protein and 0.69±0.14 nmol/L of free E2, respectively. The main mitochondrial Ca(2+) influx mechanism is the Ruthenium Red-sensitive uniporter driven by mitochondrial membrane potential. Despite no effect of E2 on Ca(2+) influx, a physiological E2 concentration (0.5 nmol/L) protected mitochondrial membrane potential and consequently Ca(2+) influx from the uncoupling agent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (1 μmol/L). In neuronal cells the predominant mitochondrial Ca(2+) efflux mechanism is the Na(+)/Ca(2+) exchanger. E2 caused Ca(2+) efflux inhibition (by 46%) coupled with increased affinity of the Na(+)/Ca(2+) exchanger for Na(+). Using E2 receptor (ERα and ERβ) antagonists and agonists, we confirmed ERβ's involvement in E2-induced mitochondrial membrane potential protection as well as Ca(2+) efflux inhibition. In summary, our results indicate that the non-genomic neuromodulatory role of E2 in rat hippocampus is achieved by affecting mitochondrial Ca(2+) transport via, in part, mitochondrial ERβ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.