Abstract

Mitochondria, organelles essential for ATP production, play a central role in a number of cellular functions, including the regulation of insulin secretion. Neurotensin (NT), an important regulatory intestinal hormone, has been implicated in fatty acid translocation, gut motility and secretion, and intestinal cell growth; however, mechanisms regulating NT secretion have not been entirely defined. The purpose of this study was to determine the effect of inhibition of mitochondrial gene transcription on NT secretion. BON cells, a novel human carcinoid cell line that produces and secretes NT peptide and expresses the gene encoding NT (designated NT/N), were treated with ethidium bromide (EB; 0.05, 0.1, and 0.4 microg/ml), an inhibitor of DNA and RNA synthesis, or vehicle over a time course (1-4 days). Cells were then stimulated with either ACh (100 microM) or phorbol 12 myristate,13-acetate (PMA, 10 nM) for 30 min. Media and cells were extracted, and NT peptide measured by RIA. Treatment with EB had no effect on BON cell viability or cell cycle distribution over the 4-day course. In contrast, EB treatment produced a dose-dependent reduction of mitochondrial gene expression; however, NT/N gene expression was not altered. Mitochondrial inhibition by EB treatment suppressed NT secretion induced by ACh and PMA, both in a dose-dependent manner. EB-mediated inhibition of NT secretion and mitochondrial gene expression was reversed with removal of EB. Our results demonstrate that inhibition of mitochondrial gene transcription suppresses both ACh- and PMA-stimulated NT release. These findings are the first to demonstrate that mitochondrial function is important for agonist-mediated NT secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.