Abstract

Radiation is a current standard treatment of glioma. The fractionated radiotherapy with low dose of radiation over weeks has been employed in glioma patients, while radiotherapy can only offer palliation due to the radioresistance. We cumulatively radiated a glioblastoma cell line, U87MG, and screened radioresistant glioma cells. A transcriptome sequencing was performed to analyze the transcription differences between the raidoresistant and control cells, which showed the mitochondria NADH–ubiquinone oxidoreductase (Complex I) subunits were up-regulated in the radioresistant cells. The copy numbers of mitochondria were increased in the radioresistant glioma cells. After using mitochondria Complex I inhibitors, rotenone and metformin, to treat glioma cells, we found the resistant glioma cells re-sensitized to radiation. These results demonstrate that Complex I is associated with the fractioned radiation-induced radioresistance of glioma and would be a potent target for clinical radiotherapy of glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.