Abstract

ABSTRACT Osteoporotic patients suffer from bone microstructure damage and are prone to fracture and bone defect. Due to the damage of bone healing ability, the bone repair of osteoporotic patients is usually slow. Here we aimed to explore the function and potential molecular mechanism of miR-100 in osteogenic differentiation ability of bone marrow stem cells (BMSCs). Ovariectomy was performed on mice to induce osteoporosis. BMSCs were extracted from normal and ovariectomized (OVX) mice to examine the effect of microRNA (miR)-100 on BMSC osteogenic differentiation. Hematoxylin and eosin (H&E) staining and safranin O-fast green staining assays were performed on femur tissues to reveal pathological changes. The osteogenic differentiation of BMSCs were determined by Alkaline Phosphatase and Alizarin red staining assays. The results showed that miR-100 expression was significantly upregulated in bone tissues and BMSCs from osteoporotic mice. MiR-100 knockdown partially improved osteogenic function of OVX mice-derived BMSCs. Next, mechanistic target of rapamycin kinase (MTOR) was identified as the target downstream miR-100. MiR-100 deficiency can activate the protein kinase B (AKT)/mTOR pathway. MiR-100 controlled the osteogenic function of BMSCs by the AKT/mTOR pathway. Collectively, our findings demonstrate that inhibition of miR-100 facilitates bone regeneration defects of BMSCs in osteoporotic mice through AKT pathway, indicating that miR-100 might be an effective target for the treatment of osteoporotic mandibular injury and bone defect diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call