Abstract
The hyperglycemia-induced enhanced oxidative stress is a key factor of diabetic peripheral neuropathy implicated in the pathogenesis of diabetic neuropathy, and microRNA may be involved, playing promotion or protection roles. In this study, we aimed to investigate the function of miR-25 during the development of oxidative/nitrative stress and in subsequent neurological problems. We detected the oxidative stress effects and expression of miR-25 on sciatic nerves from db/db diabetic model mice and analyzed the expression of related genes by qPCR and Western blotting. Interestingly, we observed increased reactive oxygen species (ROS) and Nox4 expression in db/db mice accompanied with reduced miR-25. MiR-25 inhibitor treatment increased nicotinamide adenine dinucleotide phosphate activity in Schwann cells, whereas miR-25 precursor overexpression led to opposite results. MiR-25 precursor reduced the activation of protein kinase C and decreased Nox4 expression at both mRNA and protein levels. Advanced glycation endproducts (AGEs) and the receptor for advanced glycation endproducts (RAGE) were increased in the serum and in the peripheral nerves obtained from diabetic mice, and miR-25 inhibitor treatment in Schwann cells from wt mice led to the same effect. However, miR-25 precursor transfection reduced AGEs and RAGE, and further reduced inflammatory factors that contribute to the pathological process of peripheral nerves. These findings, for the first time, indicate that miR-25 acts as a protection factor in diabetic neuropathy by downregulating AGE–RAGE and reducing nicotinamide adenine dinucleotide phosphate oxidase. miR-25 reduced protein kinase C-α phosphorylation to produce less reactive oxygen species in diabetic peripheral nerves, and therefore it played an important role in the regulation of oxidative/nitrative stress and in consequent neurological dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.