Abstract
Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored. A mouse model of MI was established by ligation of the left anterior descending coronary artery, and primary cultures of neonatal rat cardiomyocytes (NRCMs) were submitted to hypoxic treatment to stimulate cellular injury in vitro. Our results showed that miR-214-3p level was significantly upregulated in the infarcted region of mouse hearts and in NRCMs exposed to hypoxia, accompanying with an obvious elevation of ferroptosis. Inhibition of miR-214-3p by antagomir injection improved cardiac function, decreased infarct size, and attenuated iron accumulation and oxidant stress in myocardial tissues. MiR-214-3p could also promote ferroptosis and cellular impairments in NRCMs, while miR-214-3p inhibitor effectively protected cells from hypoxia. Furthermore, dual luciferase reporter gene assay revealed that malic enzyme 2 (ME2) is a direct target of miR-214-3p. In cardiomyocytes, overexpression of ME2 ameliorated the detrimental effects and excessive ferroptosis induced by miR-214-3p mimic, whereas ME2 depletion compromised the protective role of miR-214-3p inhibitor against hypoxic injury and ferroptosis. These findings suggest that miR-214-3p contributes to enhanced ferroptosis during MI at least partially via suppressing ME2. Inhibition of miR-214-3p may be a new approach for tackling MI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and biophysical research communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.