Abstract

BackgroundInflammation and apoptosis are considered to be two main factors affecting ischemic brain injury and the subsequent reperfusion damage. MiR-19a-3p has been reported to be a possible novel biomarker in ischemic stroke. However, the function and molecular mechanisms of miR-19a-3p remain unclear in cerebral ischemia/reperfusion (I/R) injury.MethodsThe I/R injury model was established in vivo by middle cerebral artery occlusion/reperfusion (MCAO/R) in rats and in vitro by oxygen–glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. The expression of miR-19a-3p was determined by reverse transcription quantitative PCR. The infarction volumes, Neurological deficit scores, apoptosis, cell viability, pro-inflammatory cytokines and apoptosis were evaluated using Longa score, Bederson score, TTC, TUNEL staining, CCK-8, ELISA, flow cytometry assays. Luciferase reporter assay was utilized to validate the target gene of miR-19a-3p.ResultsWe first found miR-19a-3p was significantly up-regulated in rat I/R brain tissues and OGD/R induced SH-SY5Y cells. Using the in vivo and in vitro I/R injury model, we further demonstrated that miR-19a-3p inhibitor exerted protective role against injury to cerebral I/R, which was reflected by reduced infarct volume, improved neurological outcomes, increased cell viability, inhibited inflammation and apoptosis. Mechanistically, miR-19a-3p binds to 3′UTR region of IGFBP3 mRNA. Inhibition of miR-19a-3p caused the increased expression of IGFBP3 in OGD/R induced SH-SY5Y cells. Furthermore, we showed that IGFBP3 overexpression imitated, while knockdown reversed the protective effects of miR-19a-3p inhibitor against OGD/R-induced injury.ConclusionsIn summary, our findings showed miR-19a-3p regulated I/R-induced inflammation and apoptosis through targeting IGFBP3, which might provide a potential therapeutic target for cerebral I/R injury.

Highlights

  • Inflammation and apoptosis are considered to be two main factors affecting ischemic brain injury and the subsequent reperfusion damage

  • We investigated the role of miR-19a-3p in inflammation and apoptosis in middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen and glucose deprivation/reoxygenation (OGD/R) induced SH-SY5Y cell model

  • Down‐regulation of miR‐19a‐3p protected rat brain against cerebral I/R injury To investigate the potential role of miR-19a-3p in brain I/R injury, the rats randomly received an intracerebroventricular injection of miR-19a-3p inhibitor prior to MCAO treatment, with Sham as control

Read more

Summary

Introduction

Inflammation and apoptosis are considered to be two main factors affecting ischemic brain injury and the subsequent reperfusion damage. MiR-19a-3p has been reported to be a possible novel biomarker in ischemic stroke. Chai et al Biol Res (2020) 53:17 the inflammation and apoptosis are considered to be main factors inducing nerve cell injury after I/R [3,4,5,6]. With the development of ischemic stroke studies, investigation of the role of miRs in cerebral I/R injury has been increased. MiR-132 has been reported to attenuate cerebral injury by protecting blood–brain barrier disruption in ischemia stroke [10]. MiR-224-3p may protect N2a cells from cerebral I/R injury by targeting FAK familyinteracting protein (FIP200) [11]. The possible mechanisms of miR19a-3p against inflammation and apoptosis in cerebral I/R injury are still understudied

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.