Abstract

Pathological cardiac hypertrophy often precedes heart failure due to various stimuli, yet effective clinical interventions remain limited. Recently, microRNAs (miRNAs) have been identified as critical regulators of cardiovascular development. In this study, we investigated the role of miR-146b-5p and its underlying mechanisms of action in cardiac hypertrophy. Isoprenaline (ISO) treatment induced significant hypertrophy and markedly enhanced the expression of miR-146b-5p in cultured neonatal rat cardiomyocytes and hearts of C57BL/6 mice. Transfection with the miR-146b-5p mimic led to cardiomyocyte hypertrophy accompanied by autophagy inhibition. Conversely, miR-146b-5p inhibition significantly alleviated ISO-induced autophagy depression, thereby mitigating cardiac hypertrophy both in vitro and in vivo. Our results showed that the autophagy-related mediator double FYVE domain-containing protein 1 (DFCP1) is a target of miR-146b-5p. MiR-146b-5p blocked autophagic flux in cardiomyocytes by suppressing DFCP1, thus contributing to hypertrophy. These findings revealed that miR-146b-5p is a potential regulator of autophagy associated with the onset of cardiac hypertrophy, suggesting a possible therapeutic strategy involving the inhibition of miR-146b-5p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call