Abstract

Expression of microtubule‑associated protein 1 light chain 3 (LC3) is correlated with poor prognosis in many human cancers. Hypoxia induces LC3 expression and is an essential characteristic of epithelial ovarian cancer (EOC). The aim of the present study was to elucidate the mechanism by which LC3 facilitates EOC cell migration and invasion under conditions of hypoxia. The effects of LC3B inhibition under hypoxic conditions on migration, invasion, and adhesion in HO8910PM and HO8910 EOC cell lines were investigated. LC3B inhibition was achieved by small‑interfering RNA (siRNA) targeting LC3B or by treatment with 3‑methyladenine (3‑MA). Cell migration, invasion and adhesion and the arrangement of the cytoskeleton were determined by Transwell migration assays and rhodamine phalloidin staining. Western blot analysis was performed to evaluate the expression level of LC3B and the expression and activity of ras homolog gene family member A (RhoA). Increased LC3B expression was associated with HO8910PM and HO8910 cell migration and invasion promoted under hypoxic conditions. LC3B siRNA and 3‑MA treatment each attenuated hypoxia‑induced LC3B expression, along with migration and invasion, and this was associated with a decrease in RhoA expression and disorganization of the actin cytoskeleton. LC3B may promote the migration and invasion of EOC cells by affecting the cytoskeleton via the RhoA pathway. In addition, LC3B may be a marker of tumor hypoxia and/or metastasis in EOC cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.