Abstract
We investigated the prognostic potential and regulatory mechanism of microRNA-500 (miR-500), and human gene of tissue factor pathway inhibitor (TFPI) in prostate cancer. MiR-500 expression was assessed by qRT-PCR in prostate cancer cell lines and primary tumors. Cancer patients' clinicopathological factors and overall survival were analyzed according to endogenous miR-500 level. MiR-500 was downregulated in DU145 and VCaP cells. Its effect on prostate cancer proliferation, invasion in vitro, and tumorigenicity in vivo, were probed. Possible downstream target of miR-500, TFPI was assessed by luciferase assay and qRT-PCR in prostate cancer cells. In miR-500-downregulated DU145 and VCaP cells, TFPI was silenced to see whether it was directly involved in the regulation of miR-500 in prostate cancer. TFPI alone was either upregulated or downregulated in DU145 and VCaP cells. Their effect on prostate cancer development was further evaluated. MiR-500 is upregulated in both prostate cancer cells and primary tumors. In prostate cancer patients, high miR-500 expression is associated with poor prognosis and overall survival. In DU145 and VCaP cells, miR-500 downregulation inhibited cancer proliferation, invasion in vitro, and explant growth in vivo. TFPI was verified to be associated with miR-500 in prostate cancer. Downregulation of TFPI reversed anti-cancer effects of miR-500 downregulation in prostate cancer cells. However, neither TFPI upregulation nor downregulation alone had any functional impact on prostate cancer development. MiR-500 may be a potential biomarker and molecular target in prostate cancer. TFPI may conditionally regulate prostate cancer in miR-500-downregualted prostate cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.