Abstract

Overwhelming inflammation and extensive alveolar-endothelial injury are characteristic pathological features of acute respiratory distress syndrome (ARDS)). MicroRNAs are involved in the regulation of a variety of cellular processes including endothelial damage and inflammatory responses. However, little is known about their function and the molecules regulating lung microvascular endothelial injury. Here, we determined the levels of microRNA-92a (miR-92a) in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMECs). We found that miR-92a expression was greater in HPMECs treated with LPS than in control cells. Inhibition of miR-92a through transfection with a miR-92a inhibitor significantly increased HPMECs migration, enhanced tube formation, and improved endothelial cell barrier dysfunction. Inhibition of miR-92a ameliorated the inflammatory response by decreasing the release of the proinflammatory factors IL-6 and TNF-α. In addition, integrin α5 (ITGA5) was found to be a target gene of miR-92a in LPS-induced endothelial barrier dysfunction. Western blot analysis showed that inhibition of miR-92a may ameliorate endothelial barrier dysfunction by activating the PI3K/Akt signaling pathway. Together, these results reveal an important role of miR-92a in LPS-induced endothelial barrier dysfunction, and suggest that miR-92a may have potential as a prognostic indicator and a future target for the treatment of acute lung injury (ALI)/ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call