Abstract

Background/purposeNeuropathic pain(NP) is derived from the dysfunctions of nerve system. The current research is to explore the impact and mechanism of miR-19a-3p in neuropathic pain in rats. MethodsThe NP was induced through the chronic constriction injury (CCI) surgery in rats. The pro-inflammatory factors (IL-1β, IL-6, TNF-α) in spinal cord tissues from rats were measured using Elisa kits. Moreover, the different levels of thermal hyperalgesia and mechanical allodynia in rats were examined through paw withdrawal latency (PWL) and paw withdrawal threshold (PWT). To investigate into the role of miR-19a-3p and KLF7 in NP of rats, the knockdown of miR-19a-3p alone or along with KLF7 downregulation in rats were achieved through lentivirus injection. The miR-19a-3p and KLF7 expression in spinal cord of rats on Day 3,7,14 after CCI were detected using RT-qPCR. The protein expression of KLF7 were measured by Western blot. Bioinformatics and luciferase assays were used for the prediction and verification of bindings between KLF7 and miR-19a-3p. ResultsCCI surgery caused neuropathic pain in rats with the levels of inflammatory cytokines increased and PWL and PWT decreased. Moreover, miR-19a-3p expression was increased while the protein and mRNA levels were decreased in spinal cord tissues in rats after CCI surgery. In rat microglial cells, miR-19a-3p downregulation could promote the KLF7 in both mRNA and protein expression. In spinal cord tissues of rats, the inhibition of miR-19a-3p enhanced the KLF7 expression. Furthermore, miR-19a-3p downregulation suppressed the IL-1β, IL-6 and TNF-α concentrations, and could decrease the NP but inhibition of KLF7 could partially reverse this in CCI rats. ConclusionmiR-19a-3p inhibition may alleviate NP via KLF7 in CCI rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call