Abstract

AimsHypercholesterolemia remains a critical risk factor for cardiovascular diseases and there is an urgent need to develop effective alternative therapeutics. Herein, we investigated the effects of miR-128-3p inhibition on serum cholesterol levels using a hypercholesterolemic mouse model. Materials and methodsFive injections of anti-miR-128-3p (AM-128) treatment were given, and the cholesterol profile in serum and liver was quantified. We validated the underlying gene network using qRT-PCR, western blotting, ELISA, and dual luciferase assays. Key findingsAM-128 treatment inhibits cholesterol biosynthesis by upregulating INSIG1 and downregulating HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) expression. The serum cholesterol clearance by SR-B1 (scavenger receptor class B member 1) and LDLR (low density lipoprotein receptors) was also increased. Furthermore, the catabolism of cholesterol by CYP7A1 (cytochrome P450 family 7 subfamily A member 1) was increased. SignificanceOur results confirmed a critical role of miR-128-3p inhibition in lowering serum cholesterol and suggest its potential therapeutic implications in reversing hypercholesterolemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.