Abstract
Adjustment of the cellular metabolism of pro-inflammatory macrophages is essential for their bactericidal function; however, it underlies the development of many human diseases if induced chronically. Therefore, intervention of macrophage metabolic polarisation has been recognised as a potent strategy for their treatment. Although many small-molecule inhibitors affecting macrophage metabolism have been identified, their in vivo administration requires a tool for macrophage-specific delivery to limit their potential side effects. Here, we establish Drosophila melanogaster as a simple experimental model for in vivo testing of macrophage-specific delivery tools. We found that yeast-derived glucan particles (GPs) are suitable for macrophage-specific delivery of small-molecule inhibitors. Systemic administration of GPs loaded with atorvastatin, the inhibitor of hydroxy-methyl-glutaryl-CoA reductase (Hmgcr), leads to intervention of mevalonate pathway specifically in macrophages, without affecting HMGCR activity in other tissues. Using this tool, we demonstrate that mevalonate pathway is essential for macrophage pro-inflammatory polarisation and individual's survival of infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.