Abstract

Hemoglobin (Hb) as an important iron-containing oxygen-transport protein is easily oxidized to the ferric met-form, methemoglobin (metHb), and loses the capacity of binding oxygen during storage. In this study, the experimental data indicate that the presence of Tyr and Glu significantly suppress the metHb formation in the Hb solutions in aqueous environment under aerobic conditions at the temperature of 25 and 37°C, respectively. At pO2 of 144Torr the metHb percentage in the Hb solutions was the lowest with less than 10% at day 7 after incubation with Tyr at the ratio of 24 at pH 9.5 at 25°C. At 37°C, the metHb percentage did not reach 5% after 12h of incubation with Glu at the ratio of 24 at pH 9. Molecular simulation analysis suggest that the presence of Tyr or Glu may contribute to the formation of the breakwater network, the stabilization of distal histidine, the changes in the size of heme pocket, and eventually result in the inhibition of metHb formation. This study provides insight into a new design for Hb-oxygen based carriers with strongly inhibition of metHb formation in aqueous environment under aerobic conditions, even at physiological temperature in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.