Abstract

Glioblastoma multiforme is the most commonly diagnosed malignant primary brain tumour in adults. Invasive behaviour is the pathological hallmark of malignant gliomas; consequently, its inhibition has been suggested as a therapeutic strategy. Tumour cell-derived gelatinases (matrix metalloproteinase-2, matrix metalloproteinase-9) can be considered prime factors in glioma invasiveness: their expression correlates with the progression and the degree of malignancy. Thus, broad spectrum matrix metalloproteinase inhibitors (MMP inhibitors) have been included in clinical trials. In the present study, the invasiveness, viability and progression of the human glioma cell line U87MG were investigated following treatment with N-O-isopropyl sulfonamido-based hydroxamates (compounds 1 and 2) as MMP-2 inhibitors used at nanomolar concentration. A standard broad spectrum MMP-inhibitor belonging to the classical tertiary sulfonamido-based hydroxamates family (CGS_27023A) was used too. The compounds 1 and 2 resulted in potent inhibition of cell invasiveness ( P<0.0001) without affecting viability. In some clinical trials, the combined therapy of temozolomide (an alkylating agent used in glioma treatment) plus marimastat (a broad spectrum MMP inhibitor) has provided evidence of the importance of MMPs to tumor progression and invasiveness. On this basis, the effect on U87MG cells of a combined treatment with temozolomide, plus each of the two MMP inhibitors at nanomolar concentration, was investigated. The obtained data demonstrated the inhibition of cell invasiveness and viability after treatment. These results can help in developing clinical combined therapy using MMP inhibitors that, at low doses, increase the anticancer efficacy of chemotherapeutic drugs, probably without causing the side effects typical of broad-spectrum MMP inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.